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Adult Bone Marrow-Derived Stem Cells for

Organ Regeneration and Repair

Florian Togel* and Christof Westenfelder

Stem cells have been recognized as a potential tool for the development of innovative therapeutic strategies.
There are in general two types of stem cells, embryonic and adult stem cells. While embryonic stem cell
therapy has been riddled with problems of allogeneic rejection and ethical concerns, adult stem cells have
long been used in the treatment of hematological malignancies. With the recognition of additional,
potentially therapeutic characteristics, bone marrow-derived stem cells have become a tool in regenerative
medicine{The bone marrow is an ideal source of stem cells because it is easily accessible and harbors twg,

types of stem cells. Hematopoietic stem cells give rise to all blood cell types and have been shown to exhibit

plasticity, while multipotent marrow stromal cells are the source of osteocytes, chondrocytes, and fat cells and
have been shown to support and generate a large number of different cell types. This review describes the
general characteristics of these stem cell populations and their current and potential future applications in
regenerative medicine. Developmental Dynamics 236:3321-3331, 2007, © 2007 Wiley-Liss, Inc.
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INTRODUCTION

Stem cells have always been fascinat-
ing for cell biologists due to their un-
differentiated state that can give rise
to a highly specialized cell type or or-
ganism and their seemingly endless
self-renewal potential. Only recently
have these cells become of wide public
interest, triggered by a number of
landmark observations in the late
1990s, namely the discovery of the ex-
tensive plasticity of adult stem cells
and the successful in vitro culture of
human embryonic stem cells (Thom-
son et al., 1998; Raff, 2003). The ther-
apeutic use of embryonic stem cells
(ESCs) is still debated in the public
due to ethical concerns, but their ap-

plication in human therapy is also
controversial because of immunological
incompatibilities and concerns about
uncontrolled development of malignan-
cles or teratomas from administered
cells (Hentze et al., 2007). In contrast,
adult stem cells are free of such ethical
concerns, and they can be used in the
autologous setting, thereby avoiding re-
jection. Furthermore, allogeneic stem
cells have already been extensively
used in human bone marrow transplan-
tation for the treatment of otherwise
deadly diseases (Thomas, 1999). Recog-
nition of these advantages of adult stem
cells have translated into the conduct of
a large number of clinical trials with
bone marrew—derived cells (BMDCs)

for organ repair and regeneration,
mainly in the treatment of cardiac dis-
eases. Together, the promising re-
sults with stem cell therapy have led
to the development of a new disci-
pline in medicine, regenerative med-
icine (van Laake et al., 2006). The
scope of this review is to give an
overview of the biology of BMDCs
and to discuss completed and ongo-
ing clinical trials in which organ re-
pair is enhanced with these cells.

ADULT STEM CELLS

A stem cell is defined as an undiffer-
entiated cell that is capable of asym-
metrical cell division, i.e., gives rise to
one differentiated cell type while re-
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maining in the tissue of origin as a
stem cell, thereby maintaining the re
newal capacity of the tissue. Differe
tiated cells are produced in gener
through different stages beginnin,
with progenitor cells or transit ampl
fying cells. Their proliferative activit;
is much higher than that of stem cells.
The stem cell retains its state either
through asymmetric cell division, giv-
ing rise to one stem cell and one pro-
genitor cell, or by reversal of a progen
itor cell back to a stem cell aft
symmetric division (Raff, 2003; Morr
son and Kimble, 2006). While bone
marrow, intestine, and lung have
well-known stem cell populations,
other organs previously thought to be
“post-mitotic” and unable to regener-
ate have also been shown to contain
stem cells. The brain (Gage, 2000) and
heart (Beltrami et al., 2003) are now
recognized to contain defined stem cell
populations, while this is possibly true
for the kidney (Oliver et al., 2004).

Adult stem cells are vital for contin-

uously renewing tissues such as the-

bone marrow and intestine, and play
an important role for recovery from
injury in tissues like the liver (Fausto,
2004). Many diseases, including can-
cer, have been recognized as being th
result of stem cell “defect,” a fact that|
has major implications for their treat-
ment (Reya et al., 2001).

Bone marrow is an ideal tissue for
studying stem cells because of its ac-
cessibility and because doses and pro-
liferative responses of bone marrow—
derived stem cells can be readily
investigated. Furthermore, there are
a number of well-defined mouse mod-
els and cell surface markers that allow
effective study of hematopoiesis in
healthy and injured mice. Because of
these characteristics and the experi-
ence of bone marrow transplantation
in the treatment of hematological can-
cers, bone marrow—derived stem cells
have also become a major teol in re-
generative medicine. The bone mar-
row harbers two distinet stem cell
populations: hematopoietic stem cells
(HSC) and multipotent marrow stro-
mal cells (MSC).

HEMATOPOIETIC STEM
,CELLS

The high regenerative potential of
blood cells even after severe losses and

the continuous renewal and turn-
over of lymphoeytes are powerful in-
dicators of the regenerative poten-
tial of hematopoietic stem cells
(HSCs). The German pathologist
Julius Cohnheim in 1867 was one

the first to realize that the bone mar-
row gives rise to circulating cells,
including fibroblasts engaged in in-
flammatory wound healing pro-
cesses. However, the clonogenicity of
blood cell lineages and the concept of
stem cell theory were only proven in
1961 (Becker et al., 1963; Simino-
vitch et al., 1963). HSCs are undif-
ferentiated cells capable of self-re-
newal and stepwise differentiation
into fully specialized cells of the
blood, e.g., erythrocytes, thrombo-
cytes, and leukocytes. Although
much insight has been gained into
the identity of these rare bone mar-
row cells, their full identity is still
debated and there is not one single
marker to truly identify this cell (Or-
lic and Bodine, 1994). Several labo-
ratories have identified cell popula-
tions that are highly enriched in
HSCs, which requires the demon-
stration of specific positive markers
and the absence of differentiation or
lineage markers. Currently, most
commonly used are c¢-kit and sca-1-
positivity and lineage negativity or
SLAM family markers (Spangrude et
al., 1988; Kiel et al., 2005). A definite
proof for hematopoietic stem cell ac-
tivity of a single cell, however, can
only be obtained by successful treat-
ment of a lethally irradiated mouse
with such a cell. HSCs are the best
understood stem cells in the body,
mainly due to their easy accessibil-
ity, the availability of mouse models
including a wide array of surface
marker antibodies, and their wid
use in clinical applications. How
ever, in the late 1990s, several labo-
ratories discovered surprising and
previously unknown properties of
HSCs that questioned long-held dog-
mas regarding the irreversibility of
differentiation and lineage commit-
ment (Raff, 2003). It was shown that
BMDCs not only commit to their nat-
ural lineage, but are also able to dif-
ferentiate into muscle and liver cells
(Ferrari et al., 1998; Gussoni et al.,
1999; Petersen et al., 1999). Since
these experiments utilized mainly
whole bone marrow populations, the

cell responsible for these unexpected |
results could not be identified until it *
was shown that highly purified
HSCs differentiate into parenchy-
al cells of most tissues after trans-
plantation (Krause et al, 2001).
These results are not unequivocally
accepted and might be due to a
mechanism different from transdif-
ferentiation or plasticity. Alterna-
tive explanations for their proposed
plasticity included fusion (Terada et
al., 2002; Ying et al., 2002), method-
ological problems (Raff, 2003}, re-
striction to a model system/disease
state, and presence of embryonic
stem cell-like cells in the injected
cell population. Plasticity is not a
frequent phenomenon and does not
usually oceur under steady-state
conditions (Wagers et al., 2002; Wa-
gers and Weissman, 2004), however,
it can be very powerful in certain
model systems, and even if fusion is
the primary mechanism, exploita-
tion of stem cell plasticity might yet
prove to be a useful therapeutic tool
for otherwise incurable diseases.
The concept of HSC plasticity was
the main reason for the enthusiasm
in the scientific community regard-
ing future treatment strategies in
regenerative medicine. It was based
on the assumption that transplanta-
tion of stem cells capable of paren-
chymal differentiation are able to re-
lace dead cells in damaged tissues,
thereby repairing a critically injured:
organ. Although this repair process
might be true in certain model sys-
tems, even if accomplished by cell
fusion (Masson et al., 2004), it is a
very rare and slow process, thereby
rendering it probably not effective in
injuries with rapid pathophysiologi-
cal kinetics such as acute myocardial
injury (Balsam et al., 2004). How-
ever, besides differentiation, there
are other potential mechanisms of
action of HSCs in injured tissues.
Among them are secretion of various
chemokines and cytokines, thereby
stimulating regeneration by inhibit-
ing apoptosis, suppressing immune
reactions and increasing angiogene-
sis, enhancement of proliferation of
tissue endogenous stem/progenitor
cells, and rescue by mitochondrial
transfer or cell fusion (Prockop and
Olson, 2006; Spees et al., 2006).
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TABLE 1. The Major Currently Published Studies Utilizing Stem Cell Mobilization for Tissue Regeneration®

Organ and Patient number
disease Protocol study type Results Reference
Heart, STEMI 10 [g/kg G-CSF 114, randomized, No change in infarct {Zohlnhofer et al.,
or Placebo double blind size LVEF or 2006)
restenosis rate
Heart, STEMI 10 [g/kg G-CSF 78, prospective, No change in {Ripa et al., 2006)
or Placebo randomized, systolic wall
double blind thickness, LVEF
Heart, STEMI 10 Cg/kg G-CSF 50, randomized Better diastolic wall (Ince et al., 2005)
(FIRSTLINE- after thickness,
AMD) reperfusion significant
therapy increase in LVEF
Heart, STEMI 5 Cg/kg G-CSF 20, randomized Perfusion defect size (Valgimigli et al.,
(4 days) same, LVEF 2005)
increase not
significant
Heart, STEMI G-CSF 10 g/ 44, randomized, No significant (Engelmann et
kg/Tag (5 double blind, increase in LVEF al., 2006)
Tage) placebo after 3 months
controlled
Heart, coronary 40 g GM-CSF 21, randomized, Increase in coronary (Seiler et al.,
artery intracoronary, double blind, collateral flow 2001)
disease 10 | g/kg se placebo
Peripheral 10 1 lg’kg GM- 40, randomized, No difference in (van Royen et al.,
arterial CSF every 2 placebo walking distance 2005)
disease days/2 weeks until the start of
symptoms
Brain, acute 15 [lg/kg (5 10, randomized, Improvement of the (Shyu et al.,
cerebral Tage) blinded NIHSS at 6 2006)
stroke months after

treatment

se, subcutaneously.

a§TEMI, ST elevation myocardial infarction; G-CSF, granulocyte colony stimulating facter; LVEF, left ventricular ejection fraction;

MULTIPOTENT
MESENCHYMAL STROMAL
CELLS

The second stem cell population in the
bone marrow was discovered and
characterized by the groundbreaking
work of Friedenstein, who placed
whole bone marrow into tissue culture
flasks, removed the non-adherent cell
population after some time, and char-
acterized adherent colony-forming fi-
broblast-like cells (Friedenstein et al.,
1970, 1974a,b). These rapidly growing
cells could be stimulated, by changing
growth conditions or transplantation
into animals, to differentiate into os-
teoblasts, chondrocytes, and adipo-
cytes. This work has been corrobo-
rated by many groups, and these cells
have been referred to by many differ-
ent names, e.g., colony-forming unit
fibroblasts (CFU-F), mesenchymal
stem cells, or marrow stromal cells.

Due to their multipotency, the current
consensus term is “multipotent mes-
enchymal stromal cells” (Dominici et
al., 2006). These cells are defined by
their plastic adherence, surface
marker expression of CD73, CDS0,
CD105, absence of CD34, CD45, HLA-
DR, and differentiation into adipo-
cytes, osteocytes, and chondrocytes
under specific culture conditions.
While their capability to give rise to
mesenchymal tissues is inherent,
many groups have described unex-
pected differentiation into neural cells
(Cho et al., 2005), cardiomyocytes (Pit-
tenger and Martin, 2004), and pneu-
mocytes (Rojas et al., 2005). Although
some of these results were obtained in
vitro and thereby subject to method-
ological criticism (Y. Chen et al,
2006), MSCs have been shown to con-
tribute to all organs after systemic in-
fusion, albeit to a varying degree (De-

vine et al., 2003; Anjos-Afonso et al.,
2004). MSCs are not only found in the
bone marrow but in nearly every or-
gan (da Silva Meirelles et al., 2006),
but little is known about their normal
function and capacities. MSCs are
easy to expand in vitro and can be
genetically altered by viral vectors,
which makes them an ideal and safe
long-term vehicle for cellular gene
therapy (Caplan, 2000).

MSCs are ideal vehicles for cell
therapeutic approaches because they
are easy to generate, maintain, and
expand in culture and because they
can be potentially applied, due to their
immune-privileged properties, in an
allogeneic setting. Furthermore, be-
sides giving rise to a number of cell
types, which makes them ideal for tis-
sue engineering to generate mesen-
chymal structures like bone and carti-
lage, their unique immunomodulatory



3324 TOGEL AND WESTENFELDER

TABLE 2. Clinical Studies Evaluating BMDCs for Organ Regeneration®

Organ and disease

Patient number, clinical

design, injection route Cell characteristics Results

Reference

Transmural MI after

a: Smaller and uncontrolled studies utilizing BMDCs

18, compared to Autologous mononuclear Functional and

(Strauer et al.,

PTCA representative control bone marrow cells metabolie 2005)
group regeneration

MI 35 (CD133 selected cells Coronary (Bartunek et

complications, LV al., 2008)
performance
improvement
Chronic myocardial 26, randomized double Circulating progenitor Improvement of (Erbs et al.,
ischemia MI blind; placebo cells vascular function 2005)
controlled
27 randomized Infusion of G-CSF Improved ventriculat (Kang et al.
controlled Phase II mobilized PBMC (n O function, increased 2004)
study (MAGIC) 10), Mobilisation with angiogenesis, higher
G-CSF (n [ 10) restenosis rate

MI 20 patients, 13 controls Autologous unfractioned Improved regional and (Fernandez-
bone marrow cells, 78 global LV Aviles et al.,
r41 0 108 performance 2004)

MI 6 patients CD133 selected-cells, 1.5  Global LV (Stamm et al.,
o 108 improvement 2003)

increased perfusion

Severe ischemic 8 patients Autologous MNC Improvement of (Tse et al.,

heart disease symptoms and 2003)
perfusion

Ischemic 14 patients 9 controls Autologous MNC Improved treadmill {Perin et al.,

cardiomyopathy performance 2004)

Ischemic 27, “no-option” patients Unfractioned autologous No side effects (Fuchs et al.,

cardiomyopathy BM 2006)

MI 59 (TOPCARE-AMI) Circulating progenitor Positive effects on LV (Assmus et al.,
cells (CPC), remodeling 2002;
autologous MNC Schachinger

et al., 2004)
Peripheral vascular 47: 25 with unilateral, BM MNC, PB MNC as Improvement of pain (Tatcishi-
disease 22 with bilateral control and oxygen tension Yuyama et
ischemia of the legs al., 2002)

Continued on facing page

F

duce a developmental program. This
is exemplified by the ischemically in-
red kidney, where highly specialized
polarized epithelial cells dedifferenti-
ate and express Pax-2, an important
embryonic transeription factor (Im-
grund et al., 1999). On the other hand,
the continued expression or misex-
pression of embryonie Pax-2 is also a
sign of renal disease and might lead to
a relentless loss of renal functions
(Dressler and Woolf, 1999). The tea-
son for these differences in programs
leading to organ regeneration is un-
known and there is speculation that
humans have lost this capacity during
evolution (Tanaka, 2003).
Although regeneration is close

linked to stem cells, they are not nec-
essarily a prerequisite for regenera-

parenchyma, a fact that must have
been known in ancient times, giving
rise to the Prometheus myth (Chen
and Chen, 1994).

The regeneration of a limb in lower
vertebrates, e.g., an amputated am-
phibian limb, involves several stages,
starting with wound healing, continu-
ing through demolition, phagocytosis,
and dedifferentiation to a blastema
formation, which represents the base
for morphogenesis and regrowth of the
regenerated limb (Carlson, 2005).

Blastema formation is essential for
the whole organ regeneration process,
a phenomenon that does not occur in
humans. However, injury to an organ
leads to a process of cellular dediffi
entiation with the expression o
bryonic transcription factors that 1

properties make them promising can-
didates for the treatment for a large
number of inflammatory and immune
system—mediated diseases (X. Chen et
al., 2006).

ORGAN REGENERATION
AND REPAIR

There are remarkable examples of tis-
sue regeneration in the animal king-
dom and they are valuable tools in the
study of organ regeneration (Holstein
et al., 2003; Poss et al., 2003). For
unknown reasons, humans have lost
. this dramatic ability to regenerate tis-
sues. Nevertheless, some organs still
exhibit remarkable autoregenerative
capacity after severe injury. Perhaps
best recognized is the regrowth of liver
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TABLE 2. (Continued)

Organ and disease

Patient number, clinical
design, injection route

Cell characteristics

Results

Reference

Acute MI

MI (STEMI)

MI

MI

Chronic left
ventricular
dysfunction

b: Large randomized trials utilizing BMDCs
33 cell infusion, 34

placebo, randomized,
double blind placebo
controlled

47 cell infusion, 50 no

infusion (ASTAMI)

60 patients, randomized

(BOOST)

101 cell infusions, 98
Placebo infusions,
double blind, placebo,
multicenter (REPAIR-
AMI)

24 circulating progenitor

cells (CPC), 28 BM
cells, 23 no infusion,
randomized, crossover
design (TOPCARE-

Autelogous mononuclear

BM cells after Ficoll-
separation, 3 [ 10%

Autologous mononuclear

BM cells after Ficoll-
separation, 7 [ 107
Zellen

Autologous unfractioned

BM cells, 2.5 [1 10?

MNC fraction after BM-

Aspiration and Ficoll
separation, 2.4 [/ 10®

MNC fraction after BM-

aspiration and Ficoll
separation, 7 11 107,
or peripheral blood
cells

{Janssens et
al., 2006)

No difference in global
LV function

(Lunde et al.,
2005)

No difference compared
to control group

After 6 months: LVEF (Wollert et al.,

6% higher in treated 2004}
compared to controls:
No difference after 18
months

LVEF improvement (Schachinger
compared to placebo et al,
(5.5% vs. 3%) after 4 2006h)
months. Endpeints
after 1 year
significantly
improved

Highest increase of (Assmus et al.,
LVEF (2.9%) in BM 2006)

group compared to
CPC or control

CHD)

*LVEF, left ventricular ejection fraction; BMDCs, bone marrow derived cells; MNCs, mononuclear cells; PB, peripheral blood.

tion, a fact that is illustrated by the
liver, where parenchymal cells mainly
contribute to organ regeneration and
only in severe injury is a stem cell—
like cell, the oval cell, recruited. While
organ regeneration takes place in hu-
mans, its success depends on the na-
ture of the damage and its duration. It
may be incomplete and may involve
detrimental reactions like fibrosis,
which results in replacement of

ealthy parenchyma with non-func-
tional scar tissue.

Ongoing efforts in regenerative
medicine have focused on this regen-
eration dilemma when using bone
marrow as a source of cells that facil-
itate repair of injured organs without
causing detrimental tissue reactions.
Since it was shown that bone marrow—
derived cells can give rise to myocytes
(Ferrari et al., 1998), hepatocytes (Pe-
tersen et al., 1999), endothelial and
myocardial cells (Lin et al., 2000; Orlic
et al., 2001a), neuronal and glial cells
(Brazelton et al., 2000; Mezey et al.,
2000), and a number of other cell

types (Krause et al., 2001), bone mar-
row—derived cells arte currently the
preferred cell type used in regenera-
tive medicine. A number of problems
with these studies, including the lack
of functional characterization of
“switched cells,” the mixed population
of utilized donor cclls used, and cell
fusion, have been largely ignored.
Since encouraging results have been
corroborated in some but not all larger
studies, a number of important ques-
tions await investigation at this early
stage of regenerative medicine.

CLINICAL TRIALS
HSC Mobilization

Mobilization of stem cells from their
compartment of origin, in this case the
bone marrow, into the blood, which
transports them to their potential site
of action, is the easiest and potentially
least harmful way of adopting stem
cells for regenerative therapies. Since
stem cell mobilization protocols have
been widely used in the clinic to collect

., UNDERSTAND, -

A0

- AL

stem cells for autologous or allogeneic
stem cell transplantation, clinicians
have much experience with these reg-
imens when they are adopted for re-
generative purposes (Cottler-Fox et
al., 2003). There are a number of pro-
tocols and growth factors utilized clin-
ically, most of them use G-CSF (gran-
ulocyte colony stimulating factor}, but
also GM-CSF (granulocyte macro-
phage colony stimulating factor), ad-
ministered alone or in combination,
and sometimes given with chemo-
therapy. AMD3100, SDF-1, SCF,
and statins are experimental agents
used for mobilization (Nervi et al.,
2006). The exact mechanism of HSC
mobilization is currently not known,
but it involves upregulation of pro-
teases and a secondary decrease of the
high SDF-1 concentration in the bone
marrow bloed, leading to disruption of
ankering bridges of HSC with stromal
cells and their release into the blood-
stream (Cottler-Fox et al, 2003).
Small numbers of HSC are circulating
under steady-state conditions. Animal

SopK
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models have shown that stem cell mo-
bilization is effective in organ protec-
tion, e.g., of the heart (Orlic et al,
2001b). However, since most regimens
not only increase the circulating stem
cell pool, hematopoietic growth factors
like G-CSF and GM-CSF also induce a
marked peripheral granulocytosis.
This can lead to a harmful situation,
as we showed in experimental acute
renal failure, where the mobiliza-
tion-associated granulocytosis greatly
worsened the outcome (Tdgel et al.,
2004).

The easy availability of mobilization
regimens and the existing clinical ex-
perience led to early adoption of this
treatment approach for clinical pur-
poses. Small trials, mainly in myocar-
dial infarction patients, showed the
feasibility and safety of the mobiliza-
tion approach and paved the way for
larger randomized controlled studies
(Table 1). The FIRSTLINE-AMT trial
documented a significant increase in
left ventricular ejection fraction in pa-
tients treated with G-CSF (Ince et al.,
2005), patients with coronary artery
disease showed increased collateral
flow with GM-CSF treatment (Seiler
et al., 2001), and there was an im-
provement of the NITHSS 6 months af-
ter treatment of stroke patients. How-
ever, these promising results were not
corroborated by other investigators
and the largest currently published
trial showed no change in infarct size,
LVEF, or restenosis rate after G-CSF
treatment (Zohlnhofer et al., 2007).

Despite these sobering results, the
end of the road for stem cell mobiliza-
tion has not been reached, and a num-
ber of unanswered questions remain:
which disease can be treated with mo-
bilization? What is the ideal mobiliza-
tion regimen? What is the best time
point to start such treatment?

HSC Injection

The rationale for therapeutic HSC ad-
ministration is similar to that for stem
cell mobilization. Based on experi-
mental animal studies, showing dif-
ferentiation into myocytes, vascular
cells, and many other cell types, dif-
ferent preparations of bone marrow
cells containing different doses of HSC
were used for clinical trials after myo-
cardial infarction. Most of the studies
(Table 2) used autologous mononu-

clear cell (MNC) preparations; only
some selected the cells based on a sur-
face marker, CD133 (Stamm et al.,
2007). MNC preparations contain
mainly different stages of progenitor
cells and true HSCs and MSCs are
rare in these autografts. Smaller stud-
ies egtablished the safety of this ap-
proach and demonstrated functional
and metabolic regeneration of myocar-
dial tissue (Strauer et al., 2005), im-
provement of vascular function (Erbs
et al., 2005), global left ventricular
performance (Stamm et al., 2003; Fer-
nandez-Aviles et al., 2004), and pe-
ripheral vascular disease (Tateishi-
Yuyama et al., 2002). Based on these
promising results, larger randomized
multicenter trials were conducted.
Two trials did not show an improve-
ment of cardiac function in patients
treated with autologous bone marrow
(Lunde et al., 2005; Janssens et al.,
2006), and the BOOST trial docu-
mented an improvement in LVEF af-
ter 6 months but no difference after 18
months. In contrast, the REPAIR-
AMI trial showed a significant im-
provement in the treatment group af-
ter 4 months and all endpoints were
still significantly better one year after
treatment (Schachinger et al., 2006a).
Perhaps the most significant finding
in this trial was the fact that patients
with the worst ejection fraction before
treatment benefited the most, and
that a longer time span between in-
farction and treatment resulted in a
better outcome. These results provide
valuable clues for the design of future
of trials. The TOPCARE trial com-
pared bone marrow—derived MNCs
with peripheral blood cells and con-
cluded that a treatment effect was ex-
clusively reached in the MNC-treated
group (Assmus et al., 2006).

MSC

Initial attempts at using MSCs in the
clinical setting have been made as an
adjunct to stem cell transplants, ei-
ther to improve engraftment in autol-
ogous stem cell transplantation or in
hematological malignancies treated
with HLA-matched BMT from sib-
lings (Table 3) (Koc et al., 2000; Laza-
rus et al., 2005). The safety of autolo-
gous and allogeneic MSC products has
been established in these trials and no
toxicity was documented. Due to the

ability of MSCs to differentiate into
osteocytes, they have been used as ad-
junct therapy to marrow transplanta-
tion in osteogenesis imperfecta (Hor-
witz et al., 1999, 2002). The rationale
was to introduce cells with a healthy
gene that produce physiologic bone
matrix. The fracture rate of treated
children improved and there was only
one child without long-term engraft-
ment of MSCs, which was attributed
to rejection of transplanted cells. Be-
cause of the robust immunoregulatory
properties of MSCs, these were given
to patients with graft versus host dis-
ease (GvHD) after allogeneic bone
marrow {ransplantation. Initial treat-
ment of grade IV GvHD with MSC,
normally invariably fatal, was suc-
cessful and the effectiveness was cor-
roborated in a subsequent series of pa-
tients (Le Blanc et al., 2004, 2005).
While it is difficult to prove a clinical
improvement in patients with pro-
gressive degenerative diseases like
metachromatic leukodystrophy,
Hurler syndrome, and amyotrophic
lateral sclerosis (ALS) (Koc et al.,
2002; Mazzini et al., 2006), MSC-
based therapies are currently being
tested in heart diseases (S. Chen et
al., 2006), morbus Crechn, connective
tissue degeneration, and stroke (Bang
et al., 2005).

MSCs are ideal for stem cell-hased
therapy because of their off-the-shelf
availability, a feature that cannot be
underestimated due to the acute na-
ture of many diseases requiring
prompt ftreatment. Obviously, such
immediate availability is not given
with autologous cells, since their prep-
aration is time consuming and since
the obtained cell product might be
damaged by the underlying disease it-
self. Of note, MSCs are currently the
most advanced cell therapy tool be-
cause of the availability of three FDA
approved products, Prochymal™, Pro-
vacel™, and Chondrogen™.

POTENTIAL MECHANISMS
OF ACTION

The original rationale for stem cell
therapy, based on a large number of
pre-clinical studies, was to effect re-
generation by integration of adminis-
tered and differentiated cells into the
organ with subsequent functional res-
titution. However, the finding of cell
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Hematopoietic Stem Cells

TABLE 3. Clinical Studies Using MSC for Organ Regeneration, Tissue Repair, and Engraftment Support of

Organ or disease

Cell number and
application route

Results

Reference

Acute graft versus host
disease (GvHD)

GvHD

Osteogenesis
imperfecta (OI)

Hematological diseases
treated with HSCT

Breast cancer

Osteogenesis
imperfecta

Hematological diseases
treated with HSC
transplantation

Metachromatic
leukodystrophy
(MLD) and Hurler
syndrome

Acute MI

Amyotrophic lateral
sclerosis (ALS)
Acute MI

Paraplegia

Acute stroke

2 71 10%kg allogen
(third party),
intravenous

Median 1 (1 10%kg
(range 0.4-9),
intravenous

Allogen (matched
donor), Intravenous

1, 10, and 50 [ 10°
total, autologous,
intravenous

1-2.2 [ 108
autologous
expanded MSC,
intravenous

101 10%and 5 11 10%
kg (first/second
dose), intravenous

1-5 (1 10%kg,

intravenous

2-10 11 105kg, HLA
identical donor,
intravenous

8 11 10° cells/ml
intracoronary,
autologous MSC

Autologous MSC,
intraspinal

Autologous MSC,
Intracoronary

Autologous MSC,
differenciated into
neurons in culture

Autologous MSC, 1 I
10° cells
intravenous

Complete remission of GvHD
after MSC infusion

6 complete remission, 4
improvement

Improved fracture rate and
growth
No side effects

No toxicity

No toxicity, durable
engraftment in 5 of 6
patients, acceleration of
growth, decreased fracture
rate compared to
untreated controls

No toxicity

No toxicity, low engraftment,
no measurable clinical
improvement

LVEF increase in MSC
group, improvement of
perfusion defect

No toxicity

Improved contractility

No toxicity

No toxicity

(Le Blanc et al., 2004)

(Le Blanc et al., 2005)

(Horwitz et al., 1999)

(Lazarus et al., 1995)

(Koc et al., 2000)

(Horwitz et al., 2002)

(Lazarus et al., 2005}

(Koc et al., 2002)

(Chen et al., 2004)

(Mazzini et al., 2006}
(Katritsis et al., 2007)

(Moviglia et al., 2006)

(Bang et al., 2005)

“MI, myocardial infarction.

|

fusion (Terada et al., 2002), and the
fact that only a small number of trans-
differentiated cells (1 0.1% of all
tested cell types) could be detected in
the injured crgan post transplanta-
tion, made it unlikely that cell en-
graftment is the main therapeutic
principle. Fusion can be interpreted as
a form of gene delivery into cells with
a genetic defect, as illustrated in a
model of liver damage caused by a de-
fect in the fumarylacetoacetate hydro-
lase enzyme. In this model, cell fusion

between administered MSC and hepa-
tocytes was the principal therapeutic
mechanism, resulting in cure of the
disease, animal survival, and replace-
ment of up to half of the total liver
cells (Wang et al., 2003). However, cell
fusion failed to result in the expres-
sion of the desired sarcoglycan gene in
a model of myopathy (Lapidos et al,,
2004). While mechanisms of action
cannot be actively investigated in hu-
mans, animal models have provided a
large number of other explanations for

the observed treatment effects. These
are illustrated in Figure 1. BMDSCs
secrete a number of cytokines, chemo-
kines, and growth factors, which are
potentially disease modifying. Subse-
quent actions of these factors include
stimulation of angiogenesis, suppres-
sion of inflammation, inhibition of ap-
optosis, and enhancement of endoge-
nous repair by stimulation of intrinsic
stem and progenitor cell proliferation
(Rabb, 2005; Chien, 2006; Togel et al.,
2007). Currently, there is very limited
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Fig. 1. Mechanisms of action of stem cells in
organ regeneration.

knowledge about the in situ secretion
patterns of soluble factors at the sites
of action, which is an important point
to consider, because all expression
profiles of factors have been deter-
mined in vitro, and because it is well
known that cells and their respective
gene expression profiles are influ-
enced by local factors.

SIDE EFFECTS AND
DANGERS

Major concerns about cell therapy in
general are the potential conse-
quences associated with a treatment
that results in the long-term or per-
manent presence of foreign cells in the
recipient, i.e., cells that can not be re-
trieved. Administered cells remain in
the body and although many studies
have shown only limited or transient
engraftment (Tégel et al., 2005), it
cannot be excluded that there is long-
term engraftment. While pharmaco-
logical treatments can be stopped and
potential adverse effects are thereby
limited, this is obvicusly not the case
for cell therapy. Therefore, this form
of treatment demands extraordinary
safety precautions. While teratoma
formation is a defining criterion for ES
cells, and as little as 2 ES cells con-
taminating a graft of mature cells
have been shown to give rise to tera-
tomas (Hentze et al., 2007), adult and
BMDCs do not form tumors on a reg-
ular basis. However, in vitro and
mouse studies have shown that MSCs
can undergo transformation or sup-
port growth of existing tumors
(Djouad et al., 2003; Houghton et al.,
2004; Wang et al., 2005; Tolar et al.,
2007). So far, there have been no re-
ports of transformation of adminis-
tered BMDCs into tumors in patients

treated with autologous or allogeneic
stem cells, but experience is limited
and follow-up times are insufficient to
allow assessment of true long-term ef-
fects.

Another concern, besides tumor for-
mation, iz development of fibrosis
(Iwano et al., 2002; Russo et al., 2006),
since MSCs are fibroblast-like cells
and are stimulated by TGF-!|, a factor
that has been shown to be the major
factor in the development of tissue fi-
brosis. Animal models of BMDC treat-
ment have actually shown that these
cell preparations are protective of tis-
sue fibrosis rather than profibrotic
(Ortiz et al., 2003; Zhao et al., 2005;
Ninichuk et al., 2006), rendering the
potential contribution of MSCs to fi-
brosis insignificant.

Currently, there is also a lack of
standardization procedures for stem
cell preparations. All studies de-
scribed in Tables 1-3 used their own
stem cell preparations without stan-
dardization procedures. Tt was demon-
strated that procedures need to be
carefully monitored in order to obtain
comparable stem cell preparations
(Seeger et al.,, 2007). As the field of
regenerative medicine ig still in its be-
ginning, it is of central importance
that criteria for standardization of the
cell product and therapy are rigor-
ously defined, steps that are obviously
vital to the successful conduct of fu-
ture studies.

FUTURE DIRECTIONS

Bone marrow transplantation has be-
come the main treatment for formerly
incurable leukemias and has been
successively developed from the ex-
perimental animal stage towards as
the standard treatment in the clinic.
The pioneer of this treatment, E. Don-
nell Thomas, has been awarded the
Nobel prize. As with bone marrow
transplantation, stem cell therapy
with adult BMDCs for regenerative
medicine has leaped from the experi-
mental stage into the clinic and ran-
domized trials have been completed
with success, Although stem cell ther-
apy cannot be considered as a new
treatment standard yet, it appears
very likely that it will develop into an
important teool for the innovative
treatment of many diseases.
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