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 INTRODUCTION 

 Metastasis is the cause of about 90% of cancer-associated 
deaths, yet the mechanisms governing this clinically impor-
tant process remain poorly understood. Tumor cells can 
metastasize via the lymphatics to neighboring lymph nodes. 
However, it remains unclear, in the general case, whether 
lymph nodes serve as a “way-station” en route to the vascu-
lature. Distant metastases rely on hematogenous dissemina-
tion via the blood circulation, and we will concentrate here 
on this latter process. To metastasize successfully, cancer cells 
must complete several complex sequential steps: detachment 
from the primary tumor, intravasation into the vascular sys-
tem (whether directly or via lymphatics and lymph nodes), 

survival while in transit through the circulation, initial arrest, 
extravasation, initial seeding, and survival and proliferation 
in the target tissue. Despite the fact that large primary tumors 
can shed millions of cells into the vasculature every day, very 
few metastases eventually develop ( 1, 2 ). Thus, metastasis 
is, overall, an ineffi cient process, implying that tumor cells 
frequently fail to execute one or more of the required steps 
of the metastatic cascade. Tumor cells that succeed in form-
ing metastases may have acquired the necessary traits to 
complete these steps while still in the primary tumor, either 
autonomously or as a result of changes induced by infl amma-
tion, stromal cells, or other environmental conditions (e.g., 
hypoxia and mechanical forces) present in the primary tumor 
( 3 ). However, the metastatic potential of tumor cells is also 
further very signifi cantly modulated by the environmental 
conditions and host cells, in particular platelets and bone 
marrow–derived cells (BMDC) that tumor cells encounter 
during their transit through the bloodstream and at the sites 
of distant metastases. This aspect of the metastatic cascade 
remains poorly understood because of the technical chal-
lenges associated with imaging, isolation, and analysis of 
circulating tumor cells (CTC) or single disseminated tumor 
cells that have metastasized to distant organs. 

 ABSTRACT     Tumor cells transit from the primary tumor via the blood circulation to form metas-
tases in distant organs. During this process, tumor cells encounter a number of envi-

ronmental challenges and stimuli that profoundly impact their metastatic potential. Here, we review 
the cooperative and dynamic host–tumor cell interactions that support and promote the hematogenous 
dissemination of cancer cells to sites of distant metastasis. In particular, we discuss what is known 
about the cross-talk occurring among tumor cells, platelets, leukocytes, and endothelial cells and how 
these cell–cell interactions are organized both temporally and spatially at sites of extravasation and in 
the early metastatic niche. 

  Signifi cance:  Metastasis is a function not only of tumor cells but also involves cooperative interactions 
of those cells with normal cells of the body, in particular platelets and leukocytes. These other cell 
types alter the behavior of the tumor cells themselves and of endothelial cells lining the vasculature 
and assist in tumor cell arrest and extravasation at sites of metastasis and subsequently in the estab-
lishment of tumor cells in the early metastatic niche. A better understanding of the important role 
that these contact and paracrine interactions play during metastasis will offer new opportunities for 
therapeutic intervention.  Cancer Discov; 2(12); 1091–9. ©2012 AACR.                   
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 Nevertheless, recent studies using experimental mouse 
models have begun to show the importance of host–tumor cell 
interactions, both in the circulation and at sites of extravasa-
tion, for the establishment of metastasis. Many of these stud-
ies have been conducted with intravenous injections of tumor 
cells (experimental metastasis), which is generally considered 
a standard model for studying hematogenous dissemination. 
Although this experimental setup presents some limitations 
(e.g., absence of a primary tumor and injection of tumor cells 
in a single event rather than scattered over a long period of 
time), it also offers important experimental advantages. It 
allows close temporal monitoring of the early interactions 
between single tumor cells and the host microenvironment 
and a precise characterization of the specifi c steps of the meta-
static cascade affected by a given experimental treatment ( 4 ). 

 In this review, we discuss the sequence of events and key 
host cell types that interact with tumor cells during their 
hematogenous transit and their initial establishment at the 
secondary site and how these interactions infl uence metasta-
sis and cancer prognosis.  

 Transit through the Bloodstream and 
Initial Arrest (First Minutes) 

 CTCs are frequently found in the blood of patients with 
primary solid tumors, and it is generally assumed that a sub-
set of these cells will eventually give rise to distant metastases 
( 5, 6 ). However, as indicated by intravascular injection of 
tumor cells into animal models, CTCs typically do not spend 
much time circulating through the bloodstream. Indeed, most 
carcinoma cells have diameters that are too large to pass 
through small capillaries and many are, therefore, trapped in 
the fi rst capillary bed that they encounter within minutes of 
entering the circulation ( Fig. 1 ,  2A ; ref.  2 ). During this short 
period of transit, as well as during initial arrest, cells remain 
exposed to the blood fl ow and are vulnerable to death induced 
by shear stress and turbulence or by immune cells, particularly 
natural killer (NK) cells. Thus, tumor cells that have intrinsic 

traits enabling them to escape immune surveillance or to 
interact with shielding host cells would have an increased rate 
of success in this early phase of the metastatic cascade.   

 In this respect, activation of the coagulation cascade and 
the formation of platelet-rich thrombi around tumor cells in 
the vasculature have both been proposed to play major roles 
in physically shielding CTCs from the stress of blood fl ow 
and from lysis by NK cells ( Fig. 2A ; refs.  7–11 ). Tissue factor 
expressed by tumor cells triggers the formation of thrombin, 
which leads to both coagulation and platelet activation. In 
turn, coagulation and platelet activation enhance metastatic 
spread ( 11–16 ). Fibrin can be bound by integrins, αvβ3 on 
tumor cells and αIIbβ3 on activated platelets, leading to for-
mation of tumor cell–fi brin–platelet aggregates. Therefore, 
genetic elimination or blockade of β3 integrins on platelets or 
tumor cells compromises metastasis ( 8–10 ,  17–19 ). Further-
more, expression of diverse P-selectin ligands by tumor cells 
also favors their interaction with P-selectin on the surfaces 
of activated platelets ( 20 ). Consequently, platelet–tumor cell 
microthrombi do not form in P-selectin −/−  mice and these mice 
are protected from metastasis ( 21, 22 ). More generally, diverse 
intact platelet functions (e.g., platelet activation, adhesion via 
surface receptors, and TGF-β release) have been shown to be 
necessary for effi cient metastasis in many experimental mod-
els ( 10 ,  17 ,  18 ,  23–26 ). Platelets are in fact the major source of 
TGF-β in the circulation ( 23 ). Consistent with a prometastatic 
role of platelets, high platelet counts and coagulation correlate 
with decreased patient survival in many different types of can-
cers, although some of that correlation could well be because 
of thrombosis caused by the presence of a tumor ( 9, 10 ,  27, 28 ). 

 In addition to providing physical shielding, platelets and 
coagulation have been shown to impair NK cell tumorilytic 
activity  in vitro  ( 7, 8 ). For example, platelet-derived TGF-β 
downregulates the activating immunoreceptor NKG2D on 
NK cells ( 29 ) and platelet-derived growth factor (PDGF) 
released by platelets can also suppress NK cell function 
( 30 ). The coating of the surfaces of tumor cells with normal 

 Figure 1.      Temporal  dynamics of host–tumor cell interactions during the early steps of the metastatic cascade. Tumor cells intravasate, rapidly transit 
through the circulation, and arrest in the vasculature of a secondary organ, generally within a few minutes. During this period, platelets form aggregates 
around CTCs or arrested tumor cells. Neutrophils also interact with tumor cells within the fi rst day. Seven to 48 hours after tail-vein injection of tumor 
cells, monocytes/macrophages are also recruited to their vicinity. Extravasation typically takes place within the fi rst 1 to 3 days after initial arrest. By 
that time, most tumor cells have exited the bloodstream and seeded into the stroma of the secondary site and additional myeloid cells are recruited to 
this initial metastatic niche. The tumor cells may reinitiate growth to form metastases within a few weeks. Alternatively, tumor cells can survive and stay 
dormant for a long period before reinitiating growth and thus form clinically relevant metastases only months or years later. Overall, only a few cells 
successfully complete the metastatic cascade and give rise to overt metastases. So far, most studies of host–tumor cell interactions during metastasis 
have been conducted at single time points arbitrarily chosen by investigators, whereas only a few studies have examined the temporal recruitment of 
host cells by real-time imaging or sampling at multiple time points. This scheme is thus a tentative summary of many independent studies reporting 
experimental observations at different time points and obtained with different model systems.   
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platelet-derived MHC class I may also favor tumor cell escape 
from the innate immune system ( 31 ). Thus, multiple platelet–
tumor cell interactions can lead to the inhibition of NK cells, 
leading to increased tumor cell survival in the circulation. 

 Clustering of tumor cells and adhesion with other cell 
types have also been proposed to contribute to successful 

tumor cell survival in the circulation. For example, CTC 
clusters isolated from the blood of patients with metastatic 
prostate cancer have higher hematoxylin and eosin staining 
intensity than do individual CTCs, suggesting reduced cell 
death and potential protection from shear stress ( 6 ,  32 ). 
Similarly, CTCs incorporated in heterotypic tumor–fi broblast 

 Figure 2.      Examples of host–tumor cell interactions during the arrest and extravasation steps of the metastatic cascade. A, upon entry into the 
blood circulation, tumor cells become exposed to interactions with various blood cells. Platelet–tumor cell interactions may occur soon after the entry 
of tumor cells into the circulation, when they are still circulating, or very early upon initial arrest. Overall, the interaction of platelets with tumor cells 
has various prometastatic functions during the vascular phase of the metastatic cascade. Early on, the formation of a platelet-rich thrombus around 
tumor cells protects tumor cells from shear stress and against lysis by NK cells. The formation of platelet microthrombi around tumor cells may also 
favor arrest and adhesion to the endothelium. Simultaneously, neutrophils may be recruited to the platelet–tumor cell aggregates and participate in 
endothelial cell activation. B, cytokines and chemokines secreted by platelets, the tumor cells, neutrophils, and the activated endothelium promote the 
recruitment of monocytes, which, in concert with the other cells already present in this “niche,” further activate the endothelium and enhance tumor cell 
extravasation. GP1b, glycoprotein 1b; ICAM, intercellular adhesion molecule; PSGL-1, P-selectin glycoprotein ligand-1; VCAM, vascular cell adhesion 
molecule. C, direct signaling between platelets and tumor cells also contributes to extravasation by inducing a more invasive prometastatic phenotype 
in tumor cells and probably also through effects on the endothelium. The recruited BMDCs and other host cells, such as fi broblasts, then contribute to 
the remodeling of the microenvironment to further support initial tumor cell survival and growth in the tissue parenchyma, eventually leading to the 
formation of overt metastases. EMT, epithelial–mesenchymal transition. See text for references.   
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aggregates retrieved from the blood of tumor-bearing mice 
have improved viability compared with single CTCs ( 33 ). 
Given the enhancing effects of platelets on metastasis, it is 
plausible that the CTCs that are most effective in metastasis 
will prove to be those in aggregates with platelets and possi-
bly also leukocytes. Most current methods for scoring CTCs 
in patients score only single cells and could be missing an 
important fraction of the CTC population.   

 Arrest and Adhesion to the Vascular Wall 
(First Hours) 

 The propensity of tumor cells to metastasize to specifi c 
organs is in part dependent on the circulation pattern, and 
the preferred sites of metastasis for a given type of cancer 
often include the fi rst capillary beds downstream of the pri-
mary tumor. Examples are metastasis of colon cancer cells 
to the liver and of breast cancer cells to the lungs, where the 
initial arrest of tumor cells may be mainly caused by physical 
restriction in capillaries of small diameter ( 2 ). In such cases, 
the formation of aggregates comprising CTCs and host cells 
may enhance passive trapping in capillaries by increasing the 
diameter of tumor cell emboli. However, during metastasis 
to either the liver or the lung, tumor cells can also arrest in 
vessels of larger diameter than capillaries ( 34 ), showing that 
active adhesion to the vasculature via specifi c proteins, such 
as selectins, integrins, and metadherin, can also contribute to 
initial arrest ( 19 ,  35–38 ). Importantly, some of these adhesion 
receptors could be contributed by associated platelets, leuko-
cytes, or stromal fi broblasts. 

 It is likely that initial trapping, which occurs within min-
utes of the entry of tumor cells into the circulation, is mostly 
passive and dependent on circulation patterns, whereas the 
cells that permanently arrest are those that form specifi c, 
longer-lasting adhesive interactions with the endothelium. In 
accordance with this concept, a high proportion of tumor cells 
rapidly arrests in capillaries in experimental metastasis models, 
whereas sustained adhesion to the endothelium leading to 
permanent seeding seems to be of variable effi ciency and often 
fails. Indeed, whereas some studies have shown that more than 
80% of tumor cells survive the circulatory phase of metastasis 
and successfully seed the lungs after 24 hours ( 39 ), others have 
reported much lower rates of cell retention (∼20% or less) at 
this same time point ( 1 ,  40–42 ). Thus, the rate of tumor cell 
death or displacement to other organs at this early stage of 
metastasis can, in many cases, be very high. For example, using 
real-time imaging  in vivo , Kienast and colleagues observed that 
melanoma or lung carcinoma cells initially arrested in brain 
capillaries can enter and leave their arrested positions several 
times during the fi rst 24 hours after intravascular injection 
( 43 ). A high proportion of these cells die or are dislodged, 
whereas some others stably adhere to the endothelium and 
extravasate. The choices between displacement or retention 
at the initial site of arrest and subsequent extravasation may 
depend on specifi c traits of tumor cells or on infl uences of 
their associated thrombi, platelets, and leukocytes. Only tumor 
cells that have extravasated but are residing in close apposition 
to blood vessels are eventually able to form overt metastases, 
suggesting that this specifi c microenvironment provides cells 
with prosurvival factors. Furthermore, tumor cells were found 
to home preferentially to discrete foci of vascular hyperper-

meability in lungs ( 44 ). Soluble factors secreted by primary 
tumors increase the formation of hyperpermeable foci via 
localized activation of endothelial focal adhesion kinase and 
E-selectin, which in turn favors the adhesion of tumor cells to 
the endothelium ( 44 ). In addition, soluble factors secreted by 
primary tumors have been reported to induce the recruitment 
of BMDCs to specifi c areas of distant organs to form so-called 
premetastatic niches. These niches have been proposed to 
create a supportive environment for the survival and growth 
of incoming tumor cells ( 45–49 ). The presence of a primary 
tumor also triggers infl ammation, which leads to the activa-
tion of the endothelium and platelets and contributes to the 
systemic mobilization of various types of BMDCs (immature 
myeloid cells, neutrophils, and monocytes), which may all play 
critical and concerted roles in metastasis ( 3 ,  42 ,  49–51 ). 

 The presence of an activated endothelium may favor arrest 
and adhesion of tumor cells and this likely involves participa-
tion of myeloid cells ( Fig. 2B ). For example, activation of the 
endothelium by interleukin (IL)-1α, IL-1β, or TNF-α leads to 
the expression of E-selectin and P-selectin as well as vascular 
cell adhesion molecule (VCAM)-1 and intercellular adhesion 
molecule (ICAM)-1 at the surfaces of endothelial cells. Binding 
of these cell adhesion molecules to their ligands on tumor cells 
can then promote tumor cell rolling and adhesion ( 20 ,  52 ,  53 ). 
Interestingly, in a liver metastasis model, the presence of tumor 
cells triggers the production of TNF-α by Kupffer cells, show-
ing that immune cells can play an active part in endothelial 
cell activation and, therefore, in favoring metastatic arrest ( 54 ). 
Similarly, Laubli and colleagues ( 55 ) showed that activation of 
the endothelium  in vitro  by tumor cells is P-selectin depend-
ent and requires the simultaneous presence of platelets and 
neutrophils together with tumor cells. In addition to favoring 
tumor cell adhesion, the activated endothelium secretes the 
infl ammatory cytokine CCL5, which promotes the recruitment 
of monocytes in proximity to the tumor cells. Importantly, 
platelets also secrete high levels of a plethora of growth factors 
and cytokines (e.g., PDGF, TGF-β, PF4/CXCL4, VEGF, stro-
mal cell–derived factor (SDF)-1/CXCL12, CXCL7, and CCL5), 
which could also contribute to endothelial activation or 
directly lead to the recruitment of BMDCs ( 56 ). Furthermore, 
the presence of P-selectin on activated platelets adherent to the 
endothelium enhances the recruitment of leukocytes via bind-
ing to P-selectin glycoprotein ligand-1 on leukocytes ( 57–59 ). 
This interaction promotes the activation of the leukocyte β2 
integrins, which then bind to fi brinogen presented by αIIbβ3 
integrin and to glycoprotein (GP)Ibα, ICAM-2, and junctional 
adhesion molecule (JAM)-3, all present on the surfaces of 
platelets, and thereby stabilizes platelet–leukocyte interactions 
( 60–63 ). Thus, the formation of cellular assemblies composed 
of tumor cells, platelets, leukocytes, and activated endothelium 
appear very likely to be required for effi cient metastasis. 

 Although the contributions of leukocytes to the primary 
tumor are well established, their roles in the processes of 
metastasis have been less well characterized until recently. Glo-
bally, leukocytes have been shown to support the early stages 
of metastasis, as illustrated by the decrease in leukocyte–
tumor cell interactions and impaired early tumor cell seeding 
in L-selectin −/−  mice ( 64 ). Similarly, metastasis was attenuated 
in mice unable to induce L-selectin ligand expression at sites 
of intravascular tumor cell arrest ( 40 ). Moreover, metastasis is 
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reduced by genetic or pharmacologic ablation of monocyte/
macrophage-lineage cells ( 42 ,  51 ,  65 ), and tail-vein injection of 
neutrophils 1 hour after injection of melanoma cells results in 
increased retention of tumor cells in the lungs after 24 hours 
(ref.  66 ;  Fig. 1 ,  2B ). These latter observations may be explained 
by the secretion of IL-8 by tumor cells, which can attract 
and activate neutrophils by increasing their expression of β2 
integrins and adhesion to tumor cells ( 66 ). In turn, matrix 
metalloproteinase (MMP)-9 produced by neutrophils pro-
motes the early survival of metastatic cells (6–24 hours) but 
has no effect on subsequent metastatic growth ( 67 ). On the 
other hand, Granot and colleagues ( 68 ) recently showed that 
tumor-entrained neutrophils (TEN; a subset of CD11b + Ly-
6G + MMP-9 +  neutrophils isolated from tumor-bearing mice) 
can counteract metastatic seeding of breast carcinoma cells 
in the lungs by killing tumor cells via the generation of 
high levels of hydrogen peroxide. These antimetastatic effects 
were observed upon the transfer of TENs into mice, but 
not if granulocyte colony-stimulating factor–stimulated neu-
trophils were used. Thus, neutrophils can either promote or 
inhibit metastasis, depending on the stimuli to which they 
are exposed. Presumably, the presence of other host cells and 
factors determines the outcome of neutrophil–tumor interac-
tions. For example, the killing activity of TENs can be blocked 
by TGF-β  in vitro , suggesting that a TGF-β–rich microenviron-
ment [such as that produced by platelet aggregation with 
tumor cells ( 23 )] could impede the function of TENs  in vivo  
and promote metastasis, similarly to the context-dependent 
activity of neutrophils observed in primary tumors ( 69 ).   

 Extravasation and Initial Seeding (First Days) 
 Extravasation effi ciency and kinetics depend both on tumor 

cells’ intrinsic behavior and host tissue characteristics, and 
tumor cells that can extravasate rapidly presumably have an 
advantage during the metastatic cascade because of their 
ability to escape promptly from the hostile environment of 
the blood fl ow ( 70, 71 ). Indeed, cancer cells that are prone 
to metastasize to the lungs express high levels of ANGPTL4 
or VEGF-A, 2 secreted factors that disrupt endothelial cell–
cell junctions and facilitate extravasation ( 72, 73 ). Similarly, 
upregulation of other genes involved in vascular and extracel-
lular matrix remodeling (EREG, COX2, MMP1, and MMP2) 
promotes extravasation and metastasis ( 70 ). 

 Extravasation, which typically occurs within 1 to 3 days ( Fig. 
1 ), can also be directly enhanced by platelet–tumor cell inter-
actions, once tumor cells enter the bloodstream. Mechanisti-
cally, platelet-derived TGF-β and direct platelet–tumor cell 
contacts synergistically activate the TGF-β/Smad and NF-κB 
pathways in cancer cells, inducing an epithelial–mesenchymal 
transition in the tumor cells  in vitro , and enhancing their 
extravasation and seeding  in vivo  ( Fig. 2C ; ref.  23 ). Plate-
let-specifi c ablation of TGF-β1 leads to reduced metastasis 
and to the impairment of tumor cell extravasation, directly 
showing the requirement for platelet-derived TGF-β in this 
process. Platelet-activated tumor cells also acquire a prometa-
static gene expression signature, which includes enhanced 
expression of various proteases, cytokines, and growth factors 
( 23 ) that may contribute to metastasis not only by directly 
enhancing tumor cell invasive potential but also by modify-
ing the microenvironment. Importantly, these results reveal 

that platelets are more than physical shields and that the 
metastatic potential of tumor cells continues to evolve out-
side the primary tumor site in response to their interactions 
with platelets in the bloodstream. Therefore, by triggering 
the activation of specifi c signaling pathways in tumor cells, 
platelets may initiate a cascade of events reaching beyond the 
initial hours of metastasis and impacting subsequent steps 
of the metastasis cascade, such as survival and growth at the 
secondary site. For example, activation of the NF-κB pathway 
in tumor cells in response to interaction with platelets pro-
motes the expression of CCL2, a proinfl ammatory chemokine 
involved in monocyte recruitment ( 23 ,  74 ). In experimental 
metastasis models, CCL2 secretion by both tumor cells and 
stromal cells was shown to recruit infl ammatory monocytes 
to the lungs early after the injection of breast tumor cells 
( Fig. 2C ; refs.  51 ,  75 ). Tissue factor produced by the tumor 
cells also enhances coagulation, and this too contributes to 
attract myeloid cells to the vicinity of tumor cells ( 65 ). The 
monocyte/macrophage-lineage cells recruited by the tumor 
cells were shown to enhance the seeding of metastatic mam-
mary tumor cells in the lung ( 42 ,  51 ,  65 ). Among these cell 
populations, a distinct set of metastasis-associated macro-
phages (F4/80 + CD11b + Gr1 − ) secrete VEGF-A that promotes 
the extravasation, seeding, and growth of the tumor cells ( 42 ), 
presumably via increased endothelial permeability. However, 
in a colon carcinoma experimental metastasis model, tumor 
cell–derived CCL2 has also been shown to signal directly to 
CCR2 expressed by endothelial cells, resulting in an increase in 
vascular permeability and subsequent metastasis by a mecha-
nism independent of myeloid cells ( Fig. 2C ; ref.  75 ). Thus, 
tumor cell extravasation is facilitated by multiple complex 
interactive networks comprising direct platelet-to-tumor cell 
signaling, tumor cell-to-endothelium signaling, and monocyte/
macrophage-to-endothelium signaling. 

 Another example of a prometastatic cascade of events 
involving multiple types of host cells was provided by Laubli 
and colleagues ( 55 ), who showed that colon carcinoma cells, 
together with platelets and neutrophils, activate the endothe-
lium. In turn, the activated endothelial cells secrete CCL5, 
which leads to increased recruitment of monocytes to the 
tumor cells. In this model, monocyte recruitment occurs after 
2 days ( 55 ), a time point at which platelets are no longer asso-
ciated with tumor cells, illustrating the sequential involve-
ment of different host cells in supporting metastatic seeding. 
Although not yet tested, it is a plausible hypothesis that 
early and transient platelet–tumor cell interactions trigger 
a cascade of paracrine signals impinging on the recruitment 
and function of various types of leukocytes, which in turn 
contribute to survival and metastasis of cancer cells. Indeed, 
macrophages and specifi c subsets of bone marrow–derived 
immature cells have been implicated in promoting cell sur-
vival and proliferation in models of metastasis to the lungs. 
For example, binding of VCAM-1 aberrantly expressed by 
tumor cells to α4 integrin expressed by macrophages, protects 
cancer cells from proapoptotic cytokines such as TRAIL, lead-
ing to increased survival and metastasis ( 76 ). Other examples 
of the importance of tumor cell–stroma interactions for early 
metastatic colonization come from recent studies, which 
showed requirements for periostin and tenascin C expres-
sion by fi broblasts at the site of metastasis for successful 
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metastatic growth ( Fig. 2C ; refs.  77, 78 ). TGF-β seems to be 
involved in the enhancement of the expression of these 2 
ECM proteins, suggesting that TGF-β expressed by tumor 
cells or host cells (such as platelets, as discussed above) may 
be important for the initiation of this supportive metastatic 
niche ( 78–80 ). Finally, it is likely that the tumor-promoting 
effects of BMDCs, which are increasingly well understood for 
tumor progression at the primary site, may also be important 
for the subsequent establishment of overt metastases.   

 The First Hours of Metastasis as a Possible 
Therapeutic Target 

 Most of the approved anticancer therapies inhibit the 
growth of primary tumors. Although some of those therapies 
also have an effect on metastatic growth, there are currently 
no therapies specifi cally aimed at preventing the metastatic 
process by targeting the different steps of the metastatic cas-
cade. Furthermore, although some potential antimetastatic 
compounds have been identifi ed in preclinical models, there 
is a clear need for clinical trials specifi cally designed to test for 
antimetastatic effects (e.g., time required for the formation of 
a new metastasis) rather than for the ability of compounds to 
prevent tumor growth ( 81 ). 

 The early steps of the metastatic cascade discussed in this 
review are generally not considered as attractive clinical tar-
gets. The rationale for this opinion is that tumor cells can 
disseminate early during tumor progression ( 82, 83 ), and 
therefore it is likely that some metastatic cancer cells have 
already completed the early steps of the metastatic cascade by 
the time of cancer diagnosis. Thus, the later steps comprising 
escape from dormancy, reinitiation of growth, colonization, 
and survival in the metastatic niche are likely better targets 
for therapeutic intervention. Indeed, although CTCs can 
complete the steps of the metastatic cascade leading to seed-
ing within a few days, reinitiation of growth can be signifi -
cantly delayed and metastatic growth occurs over an extended 
period of time, providing a more manageable time window 
for therapeutic intervention. 

 That said, the early steps of metastatic dissemination dis-
cussed here may offer some new opportunities for thera-
peutic interventions targeting molecular mechanisms and 
cellular processes such as adhesion, migration, invasion, and 
epithelial–mesenchymal transition, that are not affected by 
the cytotoxic or antiproliferative effects of most traditional 
anticancer therapies. In addition, cells transiting through the 
bloodstream may be particularly accessible to pharmacologic 
intervention. Drugs or combinations of drugs impairing not 
only the ability of tumor cells to proliferate, but also their 
ability to interact with host cells and complete the early steps 
of the metastatic cascade, may prove benefi cial to prevent fur-
ther metastatic dissemination either from the primary tumor 
or from already existing metastases. Indeed, it has been shown 
in animal models that tumor cells from metastases have the 
ability to reenter the circulation and seed other metastases 
( 84, 85 ) or to self-seed back at the primary tumor site, further 
contributing to cancer progression ( 86 ). Thus, inhibitors of 
metastatic arrest, extravasation, or seeding may impact over-
all disease progression, even if disseminated tumor cells are 
already present in a patient. However, the patients most likely 
to benefi t from metastatic prevention therapy would be those 

who have been diagnosed at early stages before detectable 
metastatic spread, or even people that do not have the disease 
but are at high risk for developing highly metastatic cancers. 
Specifi c inhibitors of metastasis could also be envisaged for 
cases in which surgical ablation of the primary tumor is not 
possible, or during the perioperative period, as surgery may 
enhance the release of CTCs into the bloodstream ( 87, 88 ). 

 Even though many aspects of the early steps of metastasis 
are still incompletely understood, molecules that are critical 
for the completion of specifi c steps of the metastatic cascade 
are starting to emerge and could possibly be exploited as 
therapeutic targets. Inhibitors of a few of the signaling path-
ways involved in the early steps of metastasis (e.g., VEGF-A, 
TGF-β, NF-κB, and CCL2) are already used in the clinic or are 
being evaluated in clinical trials for the treatment of cancers 
or other diseases. Furthermore, interfering with the ability of 
tumor cells to recruit or interact with supportive host cells 
may prevent the formation of optimal conditions for meta-
static progression. In this respect, inhibitors of cell adhesion 
receptors required for the tumor cell–host cell interactions 
may be of particular interest. 

 For example, the anticoagulants heparin or low-molecular- 
weight heparin (LMWH) have already been shown to prevent 
metastasis in preclinical models by inhibiting the formation 
of platelet–tumor cell aggregates ( 22 ). More importantly, a 
number of independent clinical trials have shown that treat-
ment with LMWH improves the survival of cancer patients ( 9 , 
 89–91 ). Interestingly, the benefi cial effects of a LMWH treat-
ment were predominantly seen in patients with good prog-
nosis or that did not have detectable metastasis at the onset 
of treatment, consistent with a role for LMWH in inhibiting 
the seeding of metastases rather than in the growth of exist-
ing ones ( 9 ,  89–91 ). Mechanistically, the effect of heparin on 
metastasis is attributed primarily to its ability to inhibit the 
interaction of P-selectin with its ligands and not to its antico-
agulant activity. Indeed, the synthetic LMWH fondaparinux, 
which does not inhibit P-selectin but retains anticoagulant 
activity, fails to inhibit experimental metastasis ( 92 ). 

 In addition to inhibiting P-selectin, heparin can also inhibit 
L-selectin and α4β1 and αIIbβ3 integrins ( 93 ), providing indi-
cations that heparin might interfere with multiple prometa-
static adhesive interactions. Similarly, function-blocking 
antibodies targeting α4β1 or αIIbβ3 integrins inhibit experi-
mental metastasis ( 94, 95 ). Moreover, small molecules and 
antibodies that inhibit the function of αIIbβ3 integrin or 
the binding of VCAM-1 to α4 integrin are already available 
in the clinic. Antagonists of αIIbβ3 integrin are used as anti-
thrombotics and could be expected to block platelet–tumor 
cell interactions through fi brinogen as would also be true for 
antagonists of αvβ3 integrin, present on many tumor cells. 
Antagonists of α4 and β2 integrins have been developed for 
the treatment of diseases involving infl ux of leukocytes, such 
as infl ammation and autoimmunity, and might thus also 
interfere with the macrophage–tumor cell interactions that 
promote tumor cell arrest, survival, and reinitiation of tumor 
growth at the site of metastasis ( 96, 97 ). 

 Overall, although inhibitors of host–tumor cell signal-
ing interactions show promise in experimental models, it 
remains to be tested whether these agents will prevent or 
signifi cantly delay metastasis in cancer patients, and clinical 
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trials will be challenging, given the long time scales necessary. 
Furthermore, potential side effects affecting vital functions, 
such as the immune response, coagulation, and hemostasis, 
will need to be carefully evaluated. Thus, a better and more 
comprehensive understanding of the molecular mechanisms 
involved in metastasis is required for the development of 
specifi c therapies with minimal potential adverse effects and 
effi cient blocking of cancer metastasis.    

 CONCLUSIONS 

 Although the complexity of the metastatic cascade has been 
acknowledged for many years, the active participation of cells 
of the host microenvironment to metastatic dissemination is 
only beginning to be appreciated. The studies reviewed herein 
provide examples of the importance of dynamic tumor–
host cell interactions at each step of the metastatic cascade 
( Figs. 1  and  2 ). The context-dependent and concerted actions 
of different populations of host cells appear to be necessary 
for effi cient metastasis. However, exactly how the different 
types of host cells interact with each other as well as with 
tumor cells both temporally and spatially, and the precise 
hierarchy and function of these interactions, remain incom-
pletely understood. Answering these fundamental questions 
will likely provide important clues not only about the molec-
ular mechanisms involved during metastatic dissemination 
but also about how these early processes infl uence the sub-
sequent metastatic colonization. Deeper understanding of 
these diverse tumor–host cell interactions may also offer 
possibilities for novel therapeutic interventions.   
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